博客
关于我
豆瓣电影简单评分模型-从收集数据到建模分析
阅读量:168 次
发布时间:2019-02-27

本文共 921 字,大约阅读时间需要 3 分钟。

豆瓣电影评分数据抓取与线性回归建模分析

一、数据抓取与解析

从豆瓣电影页面抓取数据,主要关注电影的评分信息。通过分析页面的JSON数据结构,提取电影的评分字段及其对应的百分比分布。抓取的数据包括:影片名、最终评分、五星、四星、三星、二星、一星等评分维度。

二、数据处理与建模

1. 数据清洗

将爬取到的数据转换为标准化格式,处理缺失值和异常值。所有评分字段转换为浮点型数值,便于后续建模。

2. 模型构建

基于线性回归模型进行预测,利用scikit-learn中的LinearRegression实现。数据集按训练集和测试集分割,训练集占70%,测试集占30%。模型训练后,评估其预测精度。

3. 模型评估

通过均方根误差(RMSE)评估模型预测效果。实验结果显示,模型预测精度达到98.2%。

三、模型分析与优化

1. 回归系数解读

模型表达式为:[ Y = 6.20437848 \times x_1 + 4.20811423 \times x_2 + 2.20227207 \times x_3 + 0.23005196 \times x_4 - 1.80063617 \times x_5 + 3.79333172 ]各系数代表不同评分维度的权重。

2. 模型改进方向

  • 数据扩展:增加更多样化的影片数据。
  • 超参数调优:调整学习率和正则化参数以提高模型性能。
  • 模型迁移:尝试更复杂的模型如随机森林或神经网络。
  • 特征工程:对评分字段进行更深度的特征提取和筛选。

四、技术实现细节

  • 数据抓取:使用requests库进行异步请求,通过JSON解析页面数据。每次请求设置20个结果为一个批次。
  • 异常处理:增加超时控制和异常捕获机制,确保爬虫过程的稳定性。
  • 数据存储:使用pandasDataFrame进行数据整理和CSV文件存储,便于后续分析。

五、实验结果展示

通过图形化工具(如Matplotlib)展示模型预测效果。实验结果显示,模型预测值与真实值高度一致,验证了模型的有效性。

六、模型适用性

本模型适用于对电影评分进行快速预测,能够为影片推荐系统提供参考。然而,实际应用中还需要结合用户评论情感分析等多维度数据,提升预测精度和准确性。

转载地址:http://tutb.baihongyu.com/

你可能感兴趣的文章
npm run build报Cannot find module错误的解决方法
查看>>
npm run build部署到云服务器中的Nginx(图文配置)
查看>>
npm run dev 和npm dev、npm run start和npm start、npm run serve和npm serve等的区别
查看>>
npm run dev 报错PS ‘vite‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
查看>>
npm scripts 使用指南
查看>>
npm should be run outside of the node repl, in your normal shell
查看>>
npm start运行了什么
查看>>
npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
查看>>
npm 下载依赖慢的解决方案(亲测有效)
查看>>
npm 安装依赖过程中报错:Error: Can‘t find Python executable “python“, you can set the PYTHON env variable
查看>>
npm.taobao.org 淘宝 npm 镜像证书过期?这样解决!
查看>>
npm—小记
查看>>
npm上传自己的项目
查看>>
npm介绍以及常用命令
查看>>
NPM使用前设置和升级
查看>>
npm入门,这篇就够了
查看>>
npm切换到淘宝源
查看>>
npm切换源淘宝源的两种方法
查看>>
npm前端包管理工具简介---npm工作笔记001
查看>>
npm包管理深度探索:从基础到进阶全面教程!
查看>>